
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!
Resin 4.0 includes numerous and extensive performance
enhancements over its predecessor 3.0, among them:!!
• Improved cloud computing support!
• Monitoring capabilities at every level of Resin’s

architecture!
• Enhanced performance through native optimizations!
• Simplified configuration!
• Rewrite of Resin’s internal caching!
• Many more!!!!
In order to take advantage of the unprecedented support
Resin offers for scaling Java Web Applications, we
provide this migration brochure as an outline of how to
begin your migration. !!!!!

Resin 3.0 4.0 Migration

Preliminaries………………………………………..! ! 3!!
Starting Resin………………………………………! ! 3!!
! JVM arguments……………………………!!
! Linux/Unix…………………………………..!!
! Windows…………………………………….!!
Converting Clustered Setups……………………! ! 6!!
! Example Single Server…………………..!!
! Example Two Tiers with Load Balancer!!
Server Configuration………………………………! 12!!
Rewrite……………………………………………….! 12!!
Hessian………………………………………………! 12!!
Deprecated and Removed Features…………….! 12!!
Resin IoC……………………………………………..! 13!!
Bean Configuration…………………………………! 13!!!!!

Preliminaries:!!
1. The required JDK version is now Java 1.6. As of this

writing, Java 1.5 and earlier have reached the end of
service life. Make sure you use the JDK -- the JRE is not
sufficient.!

2. The build process for compiling the Resin JNI and
installing Resin have changed. Before Resin 4.0, you
would install Resin by unpacking the distribution directly
in the filesystem. Resin 4.0's configure script now creates
makefiles that install all the necessary files in standard
locations for Linux/Unix. There is also a .deb package for
Ubuntu available. Windows installation is unchanged.!

3. The main configuration file has been renamed from
resin.conf to resin.xml.!!

As a general recommendation for migration, we suggest
starting with a clean installation of Resin 4.0, including using
the sample configuration. By beginning with the sample
configuration and modifying it to match your deployment
setup, you'll be much more likely to configure the server
correctly. This approach is usually much easier than starting
with your existing configuration and modifying to make it
compatible with the new version.!!!
Starting Resin!!
One of the major changes from Resin 3.0 to Resin 4.0 is the
introduction of the Resin Watchdog which changes the way in
which Resin is started and managed during runtime. The
httpd.sh and httpd.exe executables no longer exist. The
Watchdog documentation linked above has in-depth details,
but essentially Resin now runs with two Java processes, the
main Resin process and the Watchdog. This architecture
introduces many advantages for management and reliability,

Contents

but changes the way that Resin is started and how the Java
process is managed.!!
Example Resin 4.0 command line:!

!
JVM arguments!
JVM arguments for the main Resin process are now set
within the resin.xml file instead of being passed via a script.
Any JVM arguments on the command line actually go to the
Watchdog process. JVM arguments can be set per server in
a cluster, but in general you can set them in a <server-
default> tag to apply to all servers.!!
For example, if you wanted to set the maximum heap size of
all the Resin processes to 1GB:!

!!
Linux/Unix!
It is possible to run Resin on the console if you like for
debugging or other purposes using the "console" command
(instead of the "start" command as above). Note however
that if you intend to run Resin as a long running process, you
should not run Resin in console mode in the background.
This will discard all logging sent to stdout (see the logging
section below).!
If you are using Linux, a sample init.d script for Resin is
included with the distribution. The make install command
installs it to /etc/init.d/resin. Edit the file to set the name of the

server, the location of the resin.xml file, the log directory, and
the root directory. Check with your distribution's
documentation to see how to add the script to one or more of
your runtime levels. The script may be useful for Unix as well.!!
Unix allows only root to bind to ports below 1024. If you use
Resin as your webserver (recommended) and bind to port
80, you'll need to start Resin as root. In Resin 4.0, the Resin
process can drop privileges as soon as it's bound to all its
ports. You can configure the user that Resin uses in the
<server> or <server-default> sections:!

!!
Windows!
On Windows, Resin is now started using the resin.exe
program instead of httpd.exe.!
Logging!!
For Resin 4.0, the preferred logging method is to use
java.util.logging for all output. Standard output and error are
still supported, but should be used for special cases only. The
<log> tag of Resin 3.x has been replaced by the <log-
handler> tag in Resin 4.0. The <log-handler> can be thought
of as a control on output logging, directing log messages
from certain sources and of certain levels to a file (or other
output stream). Conversely, the <logger> tag controls the
source of log messages, controlling the logging level of
individual packages. <logger> tags use the same syntax in

Resin 4.0 as in 3.x, but <log> tags should be converted to
<log-handler> tags. Conversion is fairly straight forward:!

becomes:!

!
This log-handler will send log messages to standard output if
you run Resin on the console, but if you run Resin as a
daemon process, the output will be in the directory specified
by the --log-directory argument passed to the Watchdog on
the command line. For example, if you set the log directory to !
/var/www/log and ran a server with the id "app-a", the output
would be in /var/www/log/jvm-app-a.log. For the "default"
server (i.e. the server with an empty string as its id), the
filename will be jvm-default.log.!!
Similarly, the Watchdog's log will go to /var/www/log/
watchdog-manager.log.!!!
Converting clustered setups!!
Clustering in Resin 4.0 is drastically different from that of
Resin 3.x. Though conversion is required, the resultant
configuration file is more understandable and the capabilities
are greater. In Resin 4.0, a cluster is a collection of servers
that serve a set of virtual hosts. For each virtual host, there
are a number of web-apps. The configuration of Resin 4.0
follows this model, with the resin.xml file having roughly the
following outline.!

!
Notice that <server> is
now a child of <cluster>
instead of the other way
around (clusters contain
a set of servers) and that
the <srun> tag has
disappeared. <host>
tags are now side-by-
side <server> tags as
well, instead of the
<host> being a child of
<server>. Think of
servers as representing
a Resin instance and all
the configuration that
goes along with that (e.g.

JVM arguments, ports, ip addresses, etc.). Hosts are
collections of web-apps. A cluster then organizes servers and
hosts together to show which instances serve which content.!!!
To convert an existing clustered setup to the Resin 4.0
syntax, use the following steps:! !

1. Replace <server>
with <cluster>!
2. Delete the old
<cluster> tag!
3. Rename all <srun>
tags to <server>!!!!!!

Example: Single Server!
In Resin 4.0, all servers are part of a cluster. Note that even if
you're using a single server configuration, you are creating a
cluster with a single server. Take as an example, the minimal
configurations of Resin 3.0 compared to Resin 4.0:!!

The differences between the two configurations are:!!
1. The resin namespace is defined differently in Resin 4.0 (it

uses a CanDI-style URN)!

2. In the Resin 3.0 configuration there is no <cluster> tag,
but in Resin 4.0 this configuration is considered as a
cluster of one server.!

3. The <http> tag is now also within the <server> tag in the
Resin 4.0 configuration and the server-id attribute of the
<http> tag no longer exists. The host attribute of <http>
has been replaced by the address attribute to avoid
confusion with virtual hosts.!

4. ${__DIR__} refers to the directory containing the
configuration file. This replaces the style in the Resin 3.0
configuration and allows relocating the resin.xml easily
(e.g. to /etc/resin/resin.xml)!!!!!!!!!!!!!!!!!!!!!!!!!

Example: Two tires with the Resin Load Balancer!!
In Resin 3.0, it was common to use two configuration files for
set ups with a Resin load balancer and a backend app-tier. In
Resin 4.0, a single configuration file is used for all servers,
including the Resin load balancer. Resin 4.0 also uses its
rewrite engine to configure load balancing rather than the
explicit servlet configuration in Resin 3.0. This approach
allows for more flexible integration of the load balancer with
rewrite rules. The following examples show these differences:!

The Resin 4.0 configuration is much more compact overall
and avoids the need to synchronize the contents of each file
separately. Notice that one difference is that the load
balancer server is now a fully fledged Resin server within a
cluster as well. It has a name and its cluster can be
expanded with other servers easily.!!!!!!!!!

Server configuration!!
Resin 4.0's <server> tag contains a number of configuration
items that were not previously configured in the Resin 3.0
<srun> tag, so the two should not be considered exactly
equivalent. Specifically threading, socket, and JVM
configuration is now done on a per <server> basis, giving
greater control for systems with heterogeneous hardware or
software configurations:!!
• Thread pool (moved from <resin> in Resin 3.0)!
• Keepalive (moved from <server> in Resin 3.0)!
• <memory-free-min>] (moved from <resin> in Resin 3.0,

renamed from <min-free-memory>)!!!
RewriteFilter!
A simple RewriteFilter was available in Resin 3.0, but has
been superseded by Resin 4.0's powerful Rewrite
mechanism. The RewriteFilter performed much like the
<resin:Forward> tag of Resin 4.0, but the newer Rewrite
mechanism adds redirection, request modification, and more.!!
Hessian!!
The implementation of Hessian 2.0 shipped with Resin 4.0
(still in draft form) is not compatible with the earlier Hessian
2.0 draft in Resin 3.0 or with Hessian 1.0. Make sure to
update all clients and services to have matching versions.!!
Deprecated and removed features!!
• Support for Apache 1.x has been removed!
• Resin 3.0 configuration compatibility has been removed!
• Resin 3.1 rewrite tags are deprecated  !

Resin IoC!!
The Resin IoC system has evolved from using tags such as
<resource> and the resin:type attribute to a more
sophisticated and complete system based on JSR-299,
called CanDI. The basic steps to convert from a bean
declared as a <resource> to a CanDI bean are:!!
1. Create a tag for your bean, using an appropriate

namespace prefix (e.g. <test:MyBean>)!
2. Create a URN namespace for your class’ package (e.g.

xmlns:test=“urn:java:com.example.test”)!
3. If you have assigned a name for your bean using the

name attribute, use the javax.inject.Named annotation
instead !

4. Remove the <init> tag!
5. If you have assigned a jndi-name, use the @Resource

annotation. (Consider removing JNDI and using type safe
annotations or the @Named annotation instead.)!

!
Example: Basic bean configuration

