
Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 1 of 13

Faster PHP
Through Java

ABSTRACT
Using benchmarks and code samples throughout to
anchor the discussion, this paper explores how
Quercus -- Caucho's Java implementation of PHP --
can perform faster than the standard Apache-based
PHP both in synthetic benchmarks and real-world applications. The results are quite
impressive.

1. INTRODUCTION

PHP Performance Challenges
The prototypical Apache/MySQL/PHP architecture stack is the root of PHP performance
limitations (see Figure 1). Each request that travels to Apache gets its own process that is
more or less independent from each other. The processes do not automatically talk with each
other and caching is very limited. Because of Apache's process module, PHP can not take
advantage of the numerous opportunities to cache frequently used data (which is unfortunate
because caching is a universal method to easily increase performance by several
magnitudes).

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 2 of 13

Furthermore, as one tries to scale an application
to several commodity PHP/Apache servers, there
is one component that doesn't scale very well: the
database. The typical PHP application stores
everything in the database including the address
of the site, the name of the site, user permissions,
and even cached results of queried database
data. More servers mean ever greater loads on
the database and eventually, the database will
become the bottleneck.

The PHP/Apache process model further adds load to the database. Each process is wholly
responsible for connecting and authenticating with the database on each and every request.
This handshake can consume a significant portion of the request time. For many connections
to the database, this constant stream of connects and reconnects can severely strain the
database and negatively impact the whole performance of the application.

PHP Needs to be Taken Seriously
PHP powers a staggering 32.84% of the world wide web1, which makes it an important player
in the web server space. According to Alexa.com as of December 2008, three out of the top
ten sites in the entire world (Yahoo!, Facebook, Wikipedia) are using PHP for their main
infrastructure.

In addition, virtually every hosting solution provider has a PHP hosting plan. Compared to
Java's rate of adoption in this area, it is a no-contest in PHP's favor. A major factor for this
popularity is PHP's simplicity and ease-of-use. PHP's C-like syntax and its extensive libraries
makes it very easy for novices and professionals alike to create a dynamic website that
communicates with a database in no time. Unfortunately, we cannot say the same about Java.

Quick Introduction to Quercus
Quercus aims to solve the performance problems of PHP by completely re-implementing the
standard PHP interpreter in Java. Quercus is coded entirely in Java and it can take advantage
of being run in a long-lived environment of the Java Virtual Machine (JVM). There are
countless opportunities for Quercus to cache reoccurring data and state like a pool for
database connections to virtually eliminate the overhead of the database connection
handshake.
1. http://www.nexen.net/chiffres_cles/phpversion/18824-php_statistics_for_october_2008.php

Figure 1: Apache/MySQL/PHP Stack

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 3 of 13

2. IT'S ALL ABOUT PERFORMANCE

Quercus Architecture
Quercus runs in Resin or any other Java Application Server as a servlet. Quercus compiles
PHP sources into equivalent Java sources. Those Java sources are then compiled down into
Java bytecodes.

One of the reasons for Quercus' blazing performance is that it is built from the ground up in
100% Java. Everything from start to finish is in Java and Quercus benefits from the long-lived
environment of the JVM. Unike PHP on Apache, Quercus threads come from the global thread
pool of the application server. The threads are not isolated and Quercus can cache items like
strings, serialized data, function definitions, regular expressions, etc. across requests. These
things are not normally cached on a standard PHP/Apache server and the caching of these
items gives a considerable speed boost. Furthermore, Quercus uses the database connection
pool of the Java application server. This saves the application from the overhead of connection
initialization on every request and prevents the database from reaching its maximum open
connection limit.

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 4 of 13

Performance Optimizations
We have invested a considerable amount of time in making Quercus fast. The following is a
partial list of optimizations that are in Quercus:

• compilation to Java source code
• static code analysis
• direct function calls
• lazy array and string copying
• lazy loading of user-defined functions for faster start-up
• precomputed hashes and keys for strings (for array performance)
• custom regular expression library built from the ground up (independent of

java.util.regexp)
• libraries/modules in pure Java
• page cache
• file lookup cache
• regular expression program cache
• serialize/unserialize cache
• database connection pooling

Sample Generated Code
Quercus does static code analysis before compiling PHP sources to the equivalent Java
sources. The analysis ensures that the generated Java code are efficient. Table A shows a
highly optimized code sample from Quercus.

Table A: Generated Code Sample

PHP source Generated Java source

<?php
 function foo($count)
 {
 for ($i = 0; $i < $count; $i++) {
 }
 }
?>

public final Value call(Env env, Value p_count)
 {
 env.checkTimeout();
 Value v_count = p_count.toArgValue();
 long v_i = 0;

 for (v_i = 0; v_i < v_count.toDouble(); v_i = v_i + 1) {
 env.checkTimeout();
 }
 return com.caucho.quercus.env.NullValue.NULL;
}

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 5 of 13

For all variables, Quercus determines the type, scope, whether the variable has been
assigned, and to what type it was assigned to. With this information in hand, Quercus can
compile variables into Java primitive types. In the for loop above, variable $i becomes a Java
long and assignments to it are marshaled to its primitive type.

Synthetic Benchmarks
Because of just-in-time compilation and hand-tuned optimizations, Quercus is very speedy in
benchmarks. Table A shows the results from running a standard PHP benchmark available on
php.net2.

Table B: Time in seconds, lower is better

 PHP 5.2.6 w/ APC Quercus Faster by

Simple 0.253 0.047 440%

simplecall 0.345 0.016 2100%

simpleucall 0.567 0.047 1100%

simpleudcall 0.732 0.031 2300%

Mandel 0.665 0.047 1300%

mandel2 0.834 0.031 2600%

ackermann 0.872 0.016 5400%

Ary 0.035 0.015 100%

ary2 0.028 0.016 75%

ary3 0.347 0.156 122%

fibo 2.231 0.078 2800%

hash1 0.067 0.063 6.4%

hash2 0.060 0.016 280%

heapsort 0.210 0.062 240%

matrix 0.171 0.063 170%

nestedloop 0.367 0.093 290%

sieve 0.172 0.078 120%

strcat 0.025 0.016 56%

Completion time 7.981 0.891 796%

2. http://cvs.php.net/viewvc.cgi/ZendEngine2/bench.php?view=co&revision=1.5&content-
type=text%2Fplain
Windows XP SP2, Dell Precision T5400, Intel Xeon X5450 3.0GHz Quad Core, 4GB DDR2

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 6 of 13

Quercus is faster than PHP in all eighteen tests of the PHP benchmark. Quercus is very fast
for math (fibo). Because of heavy loop optimizations, Quercus is about five to fifty times faster
for function calls (simplecall, simpleucall, simpleucall, ackerman). Quercus completed the
entire benchmark in an impressive 0.891 seconds compared to 7.981 seconds for PHP.

Application Benchmarks
But what about real-world performance? Out of the box, Quercus is several factors faster than
plain PHP for several popular PHP applications. This is without any optimizations for PHP, so
that wouldn't be a fair comparison.

Generally, users can improve PHP's performance on their machine by enabling either APC or
eAccelerator op-code caching. Both store compiled PHP bytecodes into global shared memory
and execute them instead of the original PHP source. Even with this optimization enabled,
Quercus still retains a large performance edge. Quercus is able to service two times more
WordPress requests than PHP with either APC or eAccelerator enabled (see Figure 3)3. For
WordPress, just using Quercus has the same impact as adding another commodity

PHP/Apache machine!

3. > ab c=1 n=1000 main page
Windows XP SP2, Dell Precision T5400, Intel Xeon X5450 3.0GHz Quad Core, 4GB DDR2
drupal: devel module dummy data (default populate parameters)

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 7 of 13

Sample Code (1000 Interations)

Disclaimer
The WordPress result is probably the best-case scenario for Quercus. The benchmark is of a
fresh install of WordPress where there are very few database entries. In that situation,
Quercus is two times faster than PHP due to various optimizations like the caching of
functions, static code optimizations, and a custom regular expression implementation
independent of java.util.regexp. Quercus' performance advantage will be less as more content
are added to WordPress and in turn making the database queries a larger common factor for
each request. Therefore, applications that vigorously cache persistent data will reap the
greatest benefit from switching to Quercus.

3. CASE STUDY: WORDPRESS AND PROFILING
WordPress on Quercus is already very fast, but application developers can further improve
performance by identifying hotspots and remedying them. However, it is not trivial task to
profile a running PHP process on Apache. Quercus on the Resin Application Server makes
profiling quite a bit easier because it comes with its own profiler that is accessible from the
administration panel.

Hot Spot Report
The hot spot feature is unique to Resin's built-
in PHP profiler and is incredibly powerful.
Take for example the following PHP snippet
and resulting profile (see Figure 4).

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 8 of 13

Figure 4: Hot Spot Report of 1000 Iterations

The report shows the durations inside the page and function calls and the number of calls to
the page/function. substr() took the longest, followed by the page itself with its for loop, string
concatenation, and output to the browser. If we decrease the loop iterations to one hundred,
then the page execution time dominates subtr() in turn (see Figure 5).

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 9 of 13

Figure 5: Hot Spot Report of 100 Iterations

With this powerful tool in hand, we can readily profile any PHP application on live production
servers without ever having to modify the application.

WordPress Profile
Running the profiler on WordPress, we find that it is spending 26% of its time in the mysql/jdbc
driver with mysql_query() and mysql_fetch_field() calls (see Figure 6). This large chunk for just
the database is typical for PHP applications (but it is lower than average because of
WordPress' caching mechanism).

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 10 of 13

top >> /C:/caucho/checkout/resin/webapps/root/wordpress-2.7/index.php (35.848ms)

Hot Spot Report

Figure 6: WordPress profile on Quercus

Filters, regular expressions, WordPress initialization, and array and string manipulations are
the other top hot spots. With this information in hand, a developer can then optimize away at
the application by reducing calls to expensive operations.

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 11 of 13

Figure 7: MediaWiki on Resin/Quercus, no cache vs. with proxy cache

4. PROXY CACHE

What Is a Proxy Cache?
A proxy cache is any hardware that serves saved pages to the browser from a cache. Web
applications control which pages are saved by the proxy cache and how long they are saved
by setting the “Cache-Control” HTTP headers. With a proxy cache, a request rarely would
need to go to the server for a dynamic page.

As a result, a cached dynamic page effectively becomes just as fast as a static page. For data
that is not updated often but is read many times, proxy-caching will do wonders for
performance. MediaWiki fits this profile very well and it is the perfect candidate for a proxy
cache. Best of all, MediaWiki natively supports proxy caches.

With a “squid” proxy cache in front of MediaWiki, Wikipedia.org is quick and very responsive
under heavy load. Quercus can achieve similar performance because the Resin Application
Server has a proxy cache built-in and Quercus will automatically benefit from the “Cache-
Control” headers that MediaWiki can set. With a proxy cache, MediaWiki processes requests
about 500 times faster on Quercus (see Figure 7). MediaWiki's performance now becomes
only limited by just how fast the proxy cache can send pages from its cache to the client.

4. > ab c=1 n=1000 main page
Windows XP SP2, Dell Precision T5400, Intel Xeon X5450 3.0GHz Quad Core, 4GB DDR2

2895.93

5.54

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 12 of 13

5. PHP-JAVA INTEGRATION
Increasing specialization is a general method to improve performance. PHP is unbeatable
when it comes with running the front end of a site. Meanwhile, Java excels in mission-critical
applications and existing PHP business logic can be offloaded to a Java application server like
Resin. There the PHP application can benefit from proven enterprise features like transactions,
clustering, distributed sessions, distributed caching, etc.

There are several solutions that can help users exploit this PHP-Java integration. PHP-Java
Bridge is one of the faster ones. It communicates between PHP and Java via a binary protocol.
Because Quercus is 100% Java running in the same JVM, it is no surprise that Quercus is
around twenty to forty times faster than the PHP-Java Bridge (see Table B)5.

Table B: PHP-Java integration benchmark

 PHP-Java Bridge Quercus Result

$a = new java(“java.lang.StringBuilder”);

for ($i = 0; $i < 1000; $i++) {
 $a->append(“foo”);
}

16.08
requests/sec

357.54
requests/sec

22
times faster

$a = new java(“java.lang.StringBuilder”);

for ($i = 0; $i < 1000; $i++) {
 $a->append(“foo”);
 $b = substr($a, $i – 10, 10);
}

2.94
requests/sec

128.00
requests/sec

44
times faster

5. > ab c=1 n=1000
Windows XP SP2, Dell Precision T5400, Intel Xeon X5450 3.0GHz Quad Core, 4GB DDR2

With this kind of performance, Quercus makes it feasible for developers to re-architect a pure
PHP application into a hybrid PHP-Java application, or even the other way around from a pure
Java application to a hybrid Java-PHP application. PHP can then take advantage of Java
technologies like distributed caches (i.e. ehcache) to propel applications to performance which
are unheard of for a pure PHP solution.

Quercus Technical White Paper
By Nam Nguyen l Software Engineer l nam@caucho.com

Faster PHP Through Java: page 13 of 13

6. SUMMARY
By using the Java architecture to its fullest potential, Quercus solves some of PHP's
performance bottlenecks. With its custom regular expression module, global caching, and
static code optimizations for PHP, Quercus is super fast in both synthetic benchmarks and in
real applications. As a result, Quercus is able to achieve twice the performance of PHP for
WordPress.

Quercus introduces connection pooling and PHP-Java
integration to the PHP fold. This permits PHP applications to
benefit from proven Java technology. Java developers can
incorporate the strengths of PHP into their applications
without a prohibitive performance penalty as was the case
previously. Whereas the relationship was a tumultuous one
at best before, Quercus now allows PHP and Java to benefit
generously from each other in a new symbiotic coexistence.

About Caucho Technology
Caucho Technology is an engineering company devoted to reliable open source and high
performance Java-PHP solutions. Caucho is a Sun Microsystems licensee whose products
include Resin application server, Hessian web services and Quercus Java-PHP solutions.
Caucho Technology was founded in 1998 and is based in La Jolla, California. For more
information on Caucho Technology, please visit www.caucho.com.

Copyright © 2009 Caucho Technology, Inc. All rights reserved. All names are used for identification purposes only and may be trademarks of
their respective owners.

