

Published on Javalobby (http://java.dzone.com)
Dependency Injection - An Introductory Tutorial Part 1
By rhightower
Created 2011/03/28 - 9:08am

CDI [1] is the Java standard for dependency injection (DI) and interception (AOP). It is
evident from the popularity of DI and AOP that Java needs to address DI and AOP so that
it can build other standards and JSRs on top of it. DI and AOP are the foundation of many
Java frameworks, and CDI will be the foundation of many future specifications and JSRs.

This article discusses dependency injection in a tutorial format. It covers some of the
features of CDI such as type safe annotations configuration, alternatives and more. This
tutorial is split into two parts, the first part covers the basis of dependency injection,
@Inject, @Produces and @Qualifiers. The next part in this series covers advanced topics
like creating pluggable components with Instance and processing annotations for
configuration.

CDI is a foundational aspect of Java EE 6. It is or will be shortly supported by Caucho's
Resin [2], IBM's WebSphere, Oracle's Glassfish [3], Red Hat's JBoss [4] and many more
application servers. CDI is similar to core Spring and Guice frameworks. Like JPA did for
ORM, CDI simplifies and sanitizes the API for DI and AOP. If you have worked with Spring
or Guice, you will find CDI easy to use and easy to learn. If you are new to Dependency
Injection (DI), then CDI is an easy on ramp for picking up DI quickly. CDI is simpler to use
and learn.

CDI can be used standalone and can be embedded into any application.

Source code for this tutorial [5], and instructions [6] for use.

It is no accident that this tutorial follows this Spring 2.5 DI tutorial (using Spring "new" DI
annotations) [7] written three years ago. It will be interesting to compare and contrast the
examples in this tutorial with the one written three years ago for Spring DI annotations.

Design goals of this tutorial

This tutorial series is meant to be a description and explanation of DI in CDI without the
clutter of EJB 3.1 or JSF. There are already plenty of tutorials that cover EJB 3.1 and JSF
with CDI as a supporting actor.

CDI has merit on its own outside of the EJB and JSF space. This tutorial only covers CDI.
Repeat there is no JSF 2 or EJB 3.1 in this tutorial. There are plenty of articles and
tutorials that cover using CDI as part of a larger JEE 6 application [8]. This tutorial is not
that. This tutorial series is CDI and only CDI.

This tutorial only has full, complete code examples with source code you can download
and try out on your own. There are no code snippets where you can't figure out where in
the code you are suppose to be.

We start out slow, step by step and basic. Then once you understand the fundamentals,
we pick up the pace quite a bit.

All code examples have actually been run. We don't type in ad hoc code. If it did not run, it
is not in our tutorial. We are not winging it.

There are clear headings for code listings so you can use this tutorial as a cookbook when
you want to use some feature of CDI DI in the future. This is a code centric tutorial. Again,
the code listings are in the TOC on the wiki page [9] so you can find just the code listing
you are looking for quickly like an index for a cookbook.

Decorators, Extentions, Interceptors, Scopes are out of scope for this first tutorial. Expect
them in future tutorials.

If this tutorial is well recieved and we get enough feedback through, the JavaLobby
articles, our google group and comments section of the wiki then we will add a
comprehensive tutorial on CDI AOP (Decorators and Interceptors) and one on Extentions.
The more positive and/or constructive feedback we get the more encouraged we will be to
add more.

Dependency Injection

Dependency Injection (DI) refers to the process of supplying an external dependency to a
software component. DI can help make your code architecturally pure.

It aids in design by interface as well as test-driven development by providing a consistent
way to inject dependencies. For example, a data access object (DAO) may depend on a
database connection.

Instead of looking up the database connection with JNDI, you could inject it.

One way to think about a DI framework like CDI is to think of JNDI turned inside out.
Instead of an object looking up other objects that it needs to get its job done
(dependencies), a DI container injects those dependent objects. This is the so-called
Hollywood Principle, "Don't call us‚" (lookup objects), "we'll call you" (inject objects).

If you have worked with CRC [10] cards you can think of a dependency as a collaborator. A
collaborator is an object that another object needs to perform its role, like a DAO (data
access object) needs a JDBC connection object for example.

Dependency Injection-`AutomatedTellerMachine` without CDI or Spring

or Guice

Let's say that you have an automated teller machine (ATM, also known as an automated
banking machine in other countries) and it needs the ability to talk to a bank. It uses what
it calls a transport object to do this. In this example, a transport object handles the
low-level communication to the bank.

This example could be represented by these two interfaces as follows:

Code Listing: AutomatedTellerMachine interface

package org.cdi.advocacy;

import java.math.BigDecimal;

public interface AutomatedTellerMachine {

public abstract void deposit(BigDecimal bd);

public abstract void withdraw(BigDecimal bd);

}

Code Listing: ATMTransport interface

package org.cdi.advocacy;

public interface ATMTransport {
public void communicateWithBank(byte[] datapacket);

}

Now the AutomatedTellerMachine needs a transport to perform its intent, namely
withdraw money and deposit money. To carry out these tasks, the
AutomatedTellerMachine may depend on many objects and collaborates with its
dependencies to complete the work.

An implementation of the AutomatedTellerMachine may look like this:

Code Listing: AutomatedTellerMachineImpl class

package org.cdi.advocacy;
...
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

private ATMTransport transport;

 ...
public void deposit(BigDecimal bd) {

System.out.println("deposit called");
transport.communicateWithBank(...);

}

public void withdraw(BigDecimal bd) {
System.out.println("withdraw called");
transport.communicateWithBank(...);

}

}

The AutomatedTellerMachineImpl does not know or care how the transport withdraws
and deposits money from the bank. This level of indirection allows us to replace the
transport with different implementations such as in the following example:

Three example transports: SoapAtmTransport, StandardAtmTransport and
JsonAtmTransport

Code Listing: StandardAtmTransport

package org.cdi.advocacy;

public class StandardAtmTransport implements ATMTransport {

public void communicateWithBank(byte[] datapacket) {
System.out.println("communicating with bank via Standard transport")

 ...
}

}

Code Listing: SoapAtmTransport

package org.cdi.advocacy;

public class SoapAtmTransport implements ATMTransport {

public void communicateWithBank(byte[] datapacket) {
System.out.println("communicating with bank via Soap transport");

 ...
}

}

Code Listing: JsonRestAtmTransport

package org.cdi.advocacy;

public class JsonRestAtmTransport implements ATMTransport {

public void communicateWithBank(byte[] datapacket) {
System.out.println("communicating with bank via JSON REST transport"

}

}

Notice the possible implementations of the ATMTransport interface. The
AutomatedTellerMachineImpl does not know or care which transport it uses. Also, for
testing and developing, instead of talking to a real bank, you could easily use Mockito [11] or
EasyMock [12] or you could even write a SimulationAtmTransport that was a mock
implementation just for testing.

The concept of DI transcends CDI, Guice and Spring. Thus, you can accomplish DI
without CDI, Guice or Spring as follows:

Code Listing: `AtmMain`: DI without CDI, Spring or Guice

package org.cdi.advocacy;

public class AtmMain {

 public void main (String[] args) {
 AutomatedTellerMachine atm = new AutomatedTellerMachineImpl();
 ATMTransport transport = new SoapAtmTransport();
 /* Inject the transport. */
 ((AutomatedTellerMachineImpl)atm).setTransport(transport);

 atm.withdraw(new BigDecimal("10.00"));

 atm.deposit(new BigDecimal("100.00"));
 }

}

About the author
This article was written with CDI advocacy in mind by Rick Hightower [13] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [14].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 [15], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi [16] - Seam Weld [17] - Apache OpenWebBeans [18]

Then injecting a different transport is a mere matter of calling a different setter method as
follows:

Code Listing: `AtmMain`: DI without CDI, Spring or Guice: setTransport

ATMTransport transport = new SimulationAtmTransport();
((AutomatedTellerMachineImpl)atm).setTransport(transport);

The above assumes we added a setTransport method to the
AutomateTellerMachineImpl. Note you could just as easily use constructor arguments
instead of a setter method. Thus keeping the interface of your
AutomateTellerMachineImpl clean.

Running the examples

To run the examples quickly, we setup some maven pom.xml files for you. Here are the
instructions [6] to get the examples up and running.

Dependency Injection-`AutomatedTellerMachine` using CDI

To use CDI to manage the dependencies, do the following:

Create an empty bean.xml file under META-INF resource folder1.
Use the @Inject annotation to annotate a setTransport setter method in
AutomatedTellerMachineImpl

2.

Use the @Default annotation to annotate the StandardAtmTransport3.
Use the @Alternative to annotate the SoapAtmTransport, and
JsonRestAtmTransport.

4.

Use the @Named annotation to make the AutomatedTellerMachineImpl easy to
look up; give it the name "atm"

5.

Use the CDI beanContainer to look up the atm, makes some deposits and
withdraws.

6.

Step 1: Create an empty bean.xml file under META-INF resource folder

META-INF/beans.xml

CDI needs an bean.xml file to be in META-INF of your jar file or classpath or WEB-INF of
your web application. This file can be completely empty (as in 0 bytes). If there is no
beans.xml file in your META-INF or WEB-INF then that war file or jar file will not be
processed by CDI. Otherwise, CDI will scan the jar and war file if the beans.xml file exists
even if it is 0 bytes.

Code Listing: META-INF/beans.xml just as empty as can be

Notice that we included a starter beans.xml file with a namespace and a element.
Although beans.xml could be completely empty, it is nice to have a starter file so when
you need to add things (like later on in this tutorial) you can readily. Also it keeps the IDE
from complaining about ill formed xml when you actually do have a 0 byte beans.xml. (I
hate when the IDE complains. It is very distracting.)

Step 2: Use the @Inject annotation to annotate a setTransport setter method in
AutomatedTellerMachineImpl

The @Inject annotation is used to mark where an injection goes. You can annotate
constructor arguments, instance fields and setter methods of properties. In this example,
we will annotate the setTransport method (which would be the setter method of the
transport property).

Code Listing: AutomatedTellerMachineImpl using @Inject to inject a transport

package org.cdi.advocacy;

...

import javax.inject.Inject;

public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

private ATMTransport transport;

@Inject
public void setTransport(ATMTransport transport) {

this.transport = transport;
}

 ...

}

By default, CDI would look for a class that implements the ATMTransport interface, once
it finds this it creates an instance and injects this instance of ATMTransport using the
setter method setTransport. If we only had one possible instance of ATMTransport in our
classpath, we would not need to annotate any of the ATMTransport implementations.
Since we have three, namely, StandardAtmTransport, SoapAtmTransport, and
JsonAtmTransport, we need to mark two of them as @Alternative's and one as
@Default.

Step 3: Use the @Default annotation to annotate the StandardAtmTransport

At this stage of the example, we would like our default transport to be
StandardAtmTransport; thus, we mark it as @Default as follows:

Code Listing: StandardAtmTransport using @Default

package org.cdi.advocacy;

import javax.enterprise.inject.Default;

@Default
public class StandardAtmTransport implements ATMTransport {
 ...

It should be noted that a class is @Default by default. Thus marking it so is redundant;
and not only that its redundant.

Step 4: Use the @Alternative to annotate the SoapAtmTransport, and
JsonRestAtmTransport.

If we don't mark the others as @Alternative, they are by default as far as CDI is
concerned, marked as @Default. Let's mark JsonRestAtmTransport and
SoapRestAtmTransport @Alternative so CDI does not get confused.

Code Listing: JsonRestAtmTransport using @Alternative

package org.cdi.advocacy;

import javax.enterprise.inject.Alternative;

@Alternative
public class JsonRestAtmTransport implements ATMTransport {

...
}

Code Listing: SoapAtmTransport using @Alternative

package org.cdi.advocacy;

import javax.enterprise.inject.Alternative;

@Alternative
public class SoapAtmTransport implements ATMTransport {
 ...
}

Step 5: Use the @Named annotation to make the AutomatedTellerMachineImpl easy to
look up; give it the name "atm"

Since we are not using AutomatedTellerMachineImpl from a Java EE 6 application, let's
just use the beanContainer to look it up. Let's give it an easy logical name like "atm". To
give it a name, use the @Named annotation. The @Named annotation is also used by
JEE 6 application to make the bean accessible via the Unified EL [19] (EL stands for
Expression language and it gets used by JSPs and JSF components).

Here is an example of using @Named to give the AutomatedTellerMachineImpl the
name "atm"as follows:

Code Listing: AutomatedTellerMachineImpl using @Named

package org.cdi.advocacy;

import java.math.BigDecimal;

import javax.inject.Inject;
import javax.inject.Named;

@Named("atm")
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {
 ...

}

About the author
This article was written with CDI advocacy in mind by Rick Hightower [13] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [14].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 [15], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi [16] - Seam Weld [17] - Apache OpenWebBeans [18]

It should be noted that if you use the @Named annotations and don't provide a name,
then the name is the name of the class with the first letter lower case so this:

@Named
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {
 ...

}

makes the name automatedTellerMachineImpl.

Step 6: Use the CDI beanContainer to look up the atm, makes some deposits and
withdraws.

Lastly we want to look up the atm using the beanContainer and make some deposits.

Code Listing: AtmMain looking up the atm by name

package org.cdi.advocacy;

...

public class AtmMain {

 ...
 ...

public static void main(String[] args) throws Exception {
AutomatedTellerMachine atm = (AutomatedTellerMachine) beanContainer

.getBeanByName("atm");

atm.deposit(new BigDecimal("1.00"));

}

}

When you run it from the command line, you should get the following:

Output

deposit called
communicating with bank via Standard transport

You can also lookup the AtmMain by type and an optional list of Annotations as the name
is really to support the Unified EL (JSPs, JSF, etc.).

Code Listing: AtmMain looking up the atm by type

package org.cdi.advocacy;

...

public class AtmMain {

 ...
 ...

 public static void main(String[] args) throws Exception {
 AutomatedTellerMachine atm = beanContainer.getBeanByType(AutomatedTellerMach
 atm.deposit(new BigDecimal("1.00"));
 }

}

Since a big part of CDI is its type safe injection, looking up things by name is probably
discouraged. Notice we have one less cast due to Java Generics [20].

If you remove the @Default from the StandardATMTransport, you will get the same
output. If you remove the @Alternative from both of the other transports, namely,

JsonATMTransport, and SoapATMTransport, CDI will croak as follows:

Output

Exception in thread "main" java.lang.ExceptionInInitializerError
Caused by: javax.enterprise.inject.AmbiguousResolutionException: org.cdi.advocacy.Aut
Too many beans match, because they all have equal precedence.
See the @Stereotype and tags to choose a precedence. Beans:
 ManagedBeanImpl[JsonRestAtmTransport, {@Default(), @Any()}]
 ManagedBeanImpl[SoapAtmTransport, {@Default(), @Any()}]
 ManagedBeanImpl[StandardAtmTransport, {@javax.enterprise.inject.Default(), @Any(
 ...

CDI expects to find one and only one qualified injection. Later we will discuss how to use
an alternative.

Using @Inject to inject via constructor args and fields

You can inject into fields,constructor arguments and setter methods (or any method really).

Here is an example of field injections:

Code Listing: AutomatedTellerMachineImpl.transport using @Inject to do field injection.

...
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

@Inject
private ATMTransport transport;

Code Listing: AutomatedTellerMachineImpl.transport using @Inject to do constructor
injection.

...
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

@Inject
public AutomatedTellerMachineImpl(ATMTransport transport) {

this.transport = transport;
}

About the author
This article was written with CDI advocacy in mind by Rick Hightower [13] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.

He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [14].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 [15], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi [16] - Seam Weld [17] - Apache OpenWebBeans [18]

This flexibility allows you to create classes that are easy to unit test.

Using simple @Produces

There are times when the creation of an object may be complex. Instead of relying on a
constructor, you can delegage to a factory class to create the instance. To do this with
CDI, you would use the @Produces from your factory class as follows:

Code Listing: TransportFactory.createTransport using @Produces to define a factory
method

package org.cdi.advocacy;

import javax.enterprise.inject.Produces;

public class TransportFactory {

@Produces ATMTransport createTransport() {
System.out.println("ATMTransport created with producer");
return new StandardAtmTransport();

}

}

The factory method could use qualifiers just like a class declaration. In this example, we
chose not to. The AutomatedTellerMachineImpl does not need to specify any special
qualifiers. Here is the AutomatedTellerMachineImpl that receives the simple producer.

Code Listing: AutomatedTellerMachineImpl receives the simple producer

import javax.inject.Inject;
import javax.inject.Named;

@Named("atm")
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

@Inject
private ATMTransport transport;

 ...

Check your understanding by looking at the output of running this with AtmMain.

Output

ATMTransport created with producer
deposit called
communicating with bank via Standard transport

Using @Alternative to select an Alternative

Earlier, you may recall, we defined several alternative transports, namely,
JsonRestAtmTransport and SoapRestAtmTransport. Imagine that you are an installer
of ATM machines and you need to configure certain transports at certain locations. Our
previous injection points essentially inject the default which is the
StandardRestAtmTransport transport.

If I need to install a different transport, all I need to do is change the /META-INF/beans.xml
file to use the right transport as follows:

Code Listing: {classpath}/META-INF/beans.xml

org.cdi.advocacy.JsonRestAtmTransport

You can see from the output that the JSON REST transport is selected.

Output

deposit called
communicating with bank via JSON REST transport

Alternatives codifies and simplifies a very normal case in DI, namely, you have different
injected objects based on different builds or environments. The great thing about objects is
they can be replaced (Grady Booch said this). Alternatives allow you to mark objects that
are replacements for other objects and then activate them when you need them.

If the DI container can have alternatives, let's mark them as alternatives. Think about it this
way. I don't have to document all of the alternatives as much. It is self documenitng. If
someone knows CDI and they know about Alternatives they will not be surprised.
Alternatives really canoncalizes the way you select an Alternative.

You can think of CDI as a canonicalization of many patterns that we have been using with
more general purpose DI frameworks. The simplifcation and canonicalization is part of the
evoluiton of DI.

Code Listing: Using @Qualifier to inject different types

All objects and producers in CDI have qualifiers. If you do not assign a qaulifier it by
default has the qualifier @Default and @Any. It is like a TV crime show in the U.S., if you
do not have money for a lawyer, you will be assigned one.

Qualifiers can be used to discriminate exaclty what gets injected. You can write custom
qualifiers.

Qualifiers work like garanimal [21] tags for kids clothes, you match the qualifier from the
injection target and the injection source, then that is the type that will be injected.

If the tags (Qualifiers) match, then you have a match for injection.

You may decide that at times you want to inject Soap or Json or the Standard transport.
You don't want to list them as an alternative. You actually, for example, always want the
Json implementation in a certain case.

Here is an example of defining a qualifier for Soap.

Code Listing: Soap runtime qualifier annotation

package org.cdi.advocacy;

import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

import javax.inject.Qualifier;

@Qualifier @Retention(RUNTIME) @Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Soap {

}

Notice that a qualifier is just a runtime annotation that is marked with the @Qualifier
annotation. The @Qualifier is an annotation that decorates a runtime annoation to make it
a qualifier.

Then we would just mark the source of the injection point, namely, SoapAtmTransport
with our new @Soap qualifier as follows:

Code Listing: SoapAtmTransport using new @Soap qualifier

package org.cdi.advocacy;

@Soap
public class SoapAtmTransport implements ATMTransport {

@Override
public void communicateWithBank(byte[] datapacket) {

System.out.println("communicating with bank via Soap transport");
}

}

About the author
This article was written with CDI advocacy in mind by Rick Hightower [13] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [14].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 [15], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi [16] - Seam Weld [17] - Apache OpenWebBeans [18]

Next time you are ready to inject a Soap transport we can do that by annotating the
argument to the constructor as follows:

Code Listing: AutomatedTellerMachineImpl injecting SoapAtmTransport using new
@Soap qualifier via constructor arg

public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

private ATMTransport transport;

@Inject
public AutomatedTellerMachineImpl(@Soap ATMTransport transport) {

this.transport = transport;
}

You could also choose to do this via the setter method for the property as follows:

Code Listing: AutomatedTellerMachineImpl injecting SoapAtmTransport using new
@Soap qualifier via setter method arg

public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

private ATMTransport transport;

@Inject
public void setTransport(@Soap ATMTransport transport) {

this.transport = transport;
}

And a very common option is to use a field level injection as follows:

Code Listing: AutomatedTellerMachineImpl injecting SoapAtmTransport using new
@Soap qualifier via setter method arg

public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

@Inject @Soap
private ATMTransport transport;

From this point on, we are just going to use field level injection to simplify the examples.

Using @Qualfiers to inject multiple types into the same bean using

Let's say that our ATM machine uses different transport based on some business rules
that are configured in LDAP or config file or XML or a database (does not really matter).

The point is you want it decided at runtime which transport we are going to use.

In this scenario we may want to inject three different transports and then configure a
transport based on the business rules.

You are going to want to get notified when the injection is done and the bean is ready to
go from a CDI perspective. To get this notifcation you would annotated an init method with
the @PostConstruct annotation. Then you could pick which type of transport that you want
to use.

Note the name of the method does not matter, it is the annotation that makes it an init
method.

Code Listing: AutomatedTellerMachineImpl injecting multiple transports using new
multiple qualifiers

package org.cdi.advocacy;

import java.math.BigDecimal;

import javax.annotation.PostConstruct;
import javax.inject.Inject;
import javax.inject.Named;

@Named("atm")
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

private ATMTransport transport;

@Inject @Soap
private ATMTransport soapTransport;

@Inject @Json
private ATMTransport jsonTransport;

@Inject @Json
private ATMTransport standardTransport;

//These could be looked up in a DB, JNDI or a properties file.
private boolean useJSON = true;
private boolean behindFireWall = true;

@PostConstruct
protected void init() {

 //Look up values for useJSON and behindFireWall

if (!behindFireWall) {
transport = standardTransport;

} else {
if (useJSON) {

transport = jsonTransport;
} else {

transport = soapTransport;
}

}

}

public void deposit(BigDecimal bd) {
System.out.println("deposit called");

transport.communicateWithBank(null);
}

 ...
}

Try to follow the code above. Try to guess the output. Now compare it to this: Output

deposit called
communicating with bank via JSON REST transport

How did you do?

Using @Producer to make a decision about creation

This example builds on the last.

Perhaps you want to seperate the construction and selection of the transports from the
AutomatedTellerMachineImpl.

You could create a Producer factory method that makes a decision about the creation and
selection of the transport as follows:

Code Listing: TransportFactory deciding which transport to use/create

package org.cdi.advocacy;

import javax.enterprise.inject.Produces;

public class TransportFactory {

private boolean useJSON = true;
private boolean behindFireWall = true;

@Produces ATMTransport createTransport() {
//Look up config parameters in some config file or LDAP server or dat

System.out.println("ATMTransport created with producer makes decision

if (behindFireWall) {
if (useJSON) {

System.out.println("Created JSON transport");
return new JsonRestAtmTransport();

} else {
System.out.println("Created SOAP transport");
return new SoapAtmTransport();

}
} else {

System.out.println("Created Standard transport");
return new StandardAtmTransport();

}
}

}

The advantage of this approach is that the logic to do the creation, is seperate from the
actual AutomatedTellerMachineImpl code.

This may not always be what you want, but if it is, then the producer can help you.

The output should be the same as before.

Output

ATMTransport created with producer makes decisions
Created JSON transport
deposit called
communicating with bank via JSON REST transport

About the author
This article was written with CDI advocacy in mind by Rick Hightower [13] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [14].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 [15], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi [16] - Seam Weld [17] - Apache OpenWebBeans [18]

Using @Producer that uses qualifiers to make a decision about creation

This example builds on the last.

You can also inject items as arguments into the producer as follows:

Code Listing: TransportFactory injecting qualifier args

package org.cdi.advocacy;

import javax.enterprise.inject.Produces;

public class TransportFactory {

private boolean useJSON = true;
private boolean behindFireWall = true;

@Produces ATMTransport createTransport(@Soap ATMTransport soapTransport,
@Json ATMTransport jsonTransport) {

//Look up config parameters in some config file
System.out.println("ATMTransport created with producer makes decision

if (behindFireWall) {
if (useJSON) {

System.out.println("return passed JSON transport");
return jsonTransport;

} else {
System.out.println("return passed SOAP transport");
return soapTransport;

}
} else {

System.out.println("Create Standard transport");
return new StandardAtmTransport();

}
}

}

In the above example, createTransport becomes less of a factory method and more of a
selection method as CDI actually creates and passes the soapTransport and the
jsonTransport.

Advanced topic: (Ignore this if it does not make sense) You may wonder why I create
StandardAtmTransport and not inject it as a producer argument like soapTransport and
jsonTransport. The problem is this createTransport is by default @Default and Any but
it overrides the StandardAtmTransport which is also by default Default and @Any, but
since StandardAtmTransport is overidden then if I inject @Default ATMTransport
standardTransport as an argument then it tries to call createTransport since it is the
@Default, which will then try to inject the argument standardTransport, which will then
call createTransport, ad infinitum until we get a StackTraceOverflow. The solution is
create a qualifier for the standard, say, Standard and use that to do the injection, or create
one for the createProduces production, say, @Transport. The key here is that the
injection arguments of a producer have to have different qualifiers than the production
method or all hell breaks lose, cats sleeping with dogs, pandimodium. Ok. Okay. The key
here is that the injection arguments have to have different qualifiers than the production
method or you will get a StackTraceOverflow as CDI calls your production method to
resovle the injection point of you production method ad infinitum.

Here is the expected output.

Output

ATMTransport created with producer makes decisions
return passed JSON transport
deposit called
communicating with bank via JSON REST transport

Using multiple @Qualifiers at the same injection point to discriminate
further

You can use more than one qaulifier to further discriminate your injection target.

To demonstrate this let's define to qualifiers SuperFast and
StandardFrameRelaySwitchingFlubber. Let's say at the time we have two transports
that are StandardFrameRelaySwitchingFlubber. Let's also say that you want to inject a
transport that is not only a StandardFrameRelaySwitchingFlubber but also SuperFast.

First let's define the qualifier annotations as follows:

Code Listing: SuperFast defining a new qualifier

package org.cdi.advocacy;

...

@Qualifier @Retention(RUNTIME) @Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface SuperFast {

}

Code Listing: StandardFrameRelaySwitchingFlubber defining another new qualifier

package org.cdi.advocacy;

...

@Qualifier @Retention(RUNTIME) @Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface StandardFrameRelaySwitchingFlubber {

}

Ok, here is the code for the SuperFastAtmTransport which is marked with both the
SuperFast and the StandardFrameRelaySwitchingFlubber qualifiers.

Code Listing: SuperFastAtmTransport uses two qualifiers

package org.cdi.advocacy;

@SuperFast @StandardFrameRelaySwitchingFlubber
public class SuperFastAtmTransport implements ATMTransport {

public void communicateWithBank(byte[] datapacket) {

System.out.println("communicating with bank via the Super Fast transp
}

}

Ok, we add the StandardFrameRelaySwitchingFlubber to the StandardAtmTransport
as well.

Code Listing: StandardAtmTransport changed to use one qualifier

package org.cdi.advocacy;

@StandardFrameRelaySwitchingFlubber @Default
public class StandardAtmTransport implements ATMTransport {

public void communicateWithBank(byte[] datapacket) {
System.out.println("communicating with bank via Standard transport")

}

}

Next if I want my AutomatedTellerMachineImpl to have SuperFast transport with
StandardFrameRelaySwitchingFlubber, I would use both in the injection target as
follows:

Code Listing: AutomatedTellerMachineImpl changed to use two qualifier

public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

@Inject @SuperFast @StandardFrameRelaySwitchingFlubber
private ATMTransport transport;

 ...

About the author
This article was written with CDI advocacy in mind by Rick Hightower [13] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [14].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 [15], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi [16] - Seam Weld [17] - Apache OpenWebBeans [18]

Output:

deposit called
communicating with bank via the Super Fast transport

Exercise: Create a transport that is @SuperFast, @StandardFrameRelaySwitchingFlubber
and an @Alternative. Then use beans.xml to activate this SuperFast,
StandardFrameRelaySwitchingFlubber, Alternative transport. Send me your solution on
the CDI group mailing list [22]. The first one to send gets put on the CDI wall of fame.

Exercise for the reader. Change the injection point qualifiers to make only the
StandardAtmTransport get injected. Send me your solution on the CDI group mailing list
[22]. Don't get discouraged if you get a stack trace or two that is part of the learning
process. The first one to send gets put on the CDI wall of fame (everyone else gets an
honorable mention).

Using @Qualfiers with members to discriminate injection and stop the
explosion of annotation creation

There could be an explosion of qualifers annotations in your project. Imagine in our
example if there were 20 types of transports. We would have 20 annotations defined.

This is probably not want you want. It is okay if you have a few, but it could quickly
become unmanageable.

CDI allows you to descriminate on members of a qualifier to reduce the explosion of
qualifiers. Instead of having three qualifier you could have one qualifier and an enum.
Then if you need more types of transports, you only have to add an enum value instead of
another class.

Let's demonstrate how this works by creating a new qualifier annotation called Transport.
The Transport qualifier annotation will have a single member, an enum called type. The
type member will be an new enum that we define called TransportType.

Here is the new TransportType:

Code Listing: Transport qualifier that has an enum member

package org.cdi.advocacy;

import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

import javax.inject.Qualifier;

@Qualifier @Retention(RUNTIME) @Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Transport {

TransportType type() default TransportType.STANDARD;
}

Here is the new enum that is part of the TransportType.

Code Listing: TransportType enum that defines a type

package org.cdi.advocacy;

public enum TransportType {
JSON, SOAP, STANDARD;

}

Next you need to qualify your transport instances like so:

Code Listing: SoapAtmTransport using @Transport(type=TransportType.SOAP)

package org.cdi.advocacy;

@Transport(type=TransportType.SOAP)
public class SoapAtmTransport implements ATMTransport {
 ...

Code Listing: StandardAtmTransport using
@Transport(type=TransportType.STANDARD)

package org.cdi.advocacy;

@Transport(type=TransportType.STANDARD)
public class StandardAtmTransport implements ATMTransport {
 ...

Code Listing: JsonRestAtmTransport using @Transport(type=TransportType.JSON)

package org.cdi.advocacy;

@Transport(type=TransportType.JSON)
public class JsonRestAtmTransport implements ATMTransport {
 ...

Code Listing: AutomatedTellerMachineImpl using @Inject
@Transport(type=TransportType.STANDARD)

@Named("atm")
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

@Inject @Transport(type=TransportType.STANDARD)
private ATMTransport transport;

About the author
This article was written with CDI advocacy in mind by Rick Hightower [13] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [14].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 [15], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi [16] - Seam Weld [17] - Apache OpenWebBeans [18]

As always, you will want to run the example.

Output

deposit called
communicating with bank via Standard transport

You can have more than one member of the qualifier annotation as follows:

Code Listing: Transport qualifier annotation with more than one member

package org.cdi.advocacy;

import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

import javax.inject.Qualifier;

@Qualifier @Retention(RUNTIME) @Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Transport {

TransportType type() default TransportType.STANDARD;
int priorityLevel() default -1;

}

Now CDI is going to use both of the members to discriminate for injection.

If we had a transport like so:

Code Listing: AutomatedTellerMachineImpl using two qualifier members to discriminate

public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

@Inject @Transport(type=TransportType.STANDARD, priorityLevel=1)
private ATMTransport transport;

Then we get this:

Output

deposit called

communicating with bank via the Super Fast transport

You can match using any type supported by annotations, e.g., Strings, classes, enums,
ints, etc.

Exercise: Add a member String to the qualifier annotation. Change the injection point to
discriminate using this new string member. Why do you think this is counter to what CDI
stands for? Send me your solution on the CDI group mailing list [22]. The first one to send
gets put on the CDI wall of fame. (All others get honorable mentions.)

Conclusion

Dependency Injection (DI) refers to the process of supplying an external dependency to a
software component.

CDI [1] is the Java standard for dependency injection and interception (AOP). It is evident
from the popularity of DI and AOP that Java needs to address DI and AOP so that it can
build other standards on top of it. DI and AOP are the foundation of many Java
frameworks. I hope you share my vision of CDI as a basis for other JSRs, Java
frameworks and standards.

This article discussed CDI dependency injection in a tutorial format. It covers some of the
features of CDI such as type safe annotations configuration, alternatives and more. There
was an introduction level and and advacned level.

CDI is a foundational aspect of Java EE 6. It is or will be shortly supported by Caucho's
Resin, IBM's !WebSphere, Oracle's Glassfish, Red Hat's JBoss and many more
application servers. CDI is similar to core Spring and Guice frameworks. However CDI is a
general purpose framework that can be used outside of JEE 6.

CDI is a rethink on how to do dependency injection and AOP (interception really). It
simplifies it. It reduces it. It gets rid of legacy, outdated ideas.

CDI is to Spring and Guice what JPA is to Hibernate, and Toplink. CDI will co-exist with
Spring and Guice. There are plugins to make them interoperate nicely. There is more
integration option on the way.

This is just a brief taste. There is more to come.

Resources

CDI advocacy group [23]

CDI advocacy blog [24]

CDI advocacy google code project [25]

Google group for CDI advocacy [26]

Manisfesto version 1 [27]

Weld reference documentation [28]

CDI JSR299 [1]

Resin fast and light CDI and Java EE 6 Web Profile implementation [2]

CDI & JSF Part 1 Intro by Andy Gibson [29]

CDI & JSF Part 2 Intro by Andy Gibson [30]

CDI & JSF Part 3 Intro by Andy Gibson [31]

About the Author

This article was written with CDI advocacy in mind by Rick Hightower [32] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [14].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.
Although not a fan of EJB 3 [15], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark. There are 53 code listings in this article

Source URL: http://java.dzone.com/articles/cdi-di-p1

Links:
[1] http://jcp.org/aboutJava/communityprocess/final/jsr299/index.html
[2] http://www.caucho.com/resin/
[3] http://glassfish.java.net/
[4] http://www.jboss.org/jbossas/docs/6-x.html
[5] https://jee6-cdi.googlecode.com/svn/tutorial/cdi-di-example
[6] http://code.google.com/p/jee6-cdi/wiki/MavenDITutorialInstructions
[7] http://java.dzone.com/articles/dependency-injection-an-introd
[8] http://download.oracle.com/javaee/6/tutorial/doc/gjbnr.html
[9] http://code.google.com/p/jee6-cdi/wiki/DependencyInjectionAnIntroductoryTutorial_Part1
[10] http://en.wikipedia.org/wiki/Class-responsibility-collaboration_card
[11] http://mockito.org/
[12] http://easymock.org/
[13] http://profiles.google.com/RichardHightower/about
[14] http://java.sys-con.com/node/47735
[15] http://java.sys-con.com/node/216307
[16] http://www.caucho.com/
[17] http://seamframework.org/Weld
[18] http://openwebbeans.apache.org/1.1.0-SNAPSHOT/index.html
[19] http://java.sun.com/products/jsp/reference/techart/unifiedEL.html
[20] http://download.oracle.com/javase/tutorial/java/generics/index.html
[21] http://www.garanimals.com/about.htm
[22] http://groups.google.com/group/cdiadvocate4j?pli=1
[23] http://sites.google.com/site/cdipojo/
[24] http://cdi4jadvocate.blogspot.com/
[25] http://code.google.com/p/jee6-cdi/
[26] http://groups.google.com/group/cdiadvocate4j
[27] http://cdi4jadvocate.blogspot.com/2011/03/cdi-advocacy.html
[28] http://docs.jboss.org/weld/reference/1.1.0.Final/en-US/html/
[29] http://www.andygibson.net/blog/tutorial/getting-started-with-jsf-2-0-and-cdi-in-jee-6-part-1/
[30] http://www.andygibson.net/blog/tutorial/getting-started-with-cdi-part-2-injection/
[31] http://www.andygibson.net/blog/tutorial/getting-started-with-jsf-2-0-and-cdi-part-3/
[32] https://profiles.google.com/RichardHightower/about

